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Abstract
We calculate the Lax pairs of homogeneous and inhomogeneous one-
dimensional time-dependent Gross–Pitaevskii equations with time-dependent
scattering length. The inhomogeneity corresponds to linear and quadratic
potentials. Our approach introduces a systematic method of searching for the
Lax pair corresponding to a given differential equation. We derive known
Lax pairs for the Gross–Pitaevskii equation with homogeneous and quadratic
potentials and time-dependent scattering length. We also derive new Lax pairs
corresponding to a Gross–Pitaevskii equation with a linear potential. Using the
resulting Lax pairs, the Darboux transformation can be performed and exact
solutions of the Gross–Pitaevskii equation can be obtained for experimentally
relevant cases such as solitonic solutions.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

The experimental realization of atomic Bose–Einstein condensates in confining potentials
[1] and the use of Feschbach resonance to tune the interatomic interactions [2] led to the
realization of dark and bright solitons in these condensates [3–7]. Studying the behaviour
of these solitons requires solving an inhomogeneous nonlinear Schrödinger equation known
as the Gross–Pitaevskii equation [8]. Although numerical solutions are available [9], it will
be more interesting and insightful to have exact analytical solutions of this equation. This
will be of particular importance to the investigation of the dynamics of vortices and solitons
[10, 11]. Exact solitonic solutions are known for the homogeneous one-dimensional Gross–
Pitaevskii equation [12]. These solutions account for the dark and bright solitons realized in
the experiments. The difficulty is in solving the Gross–Pitaevskii equation with the presence
of the inhomogeneity arising from the potential that traps the condensate. Nonetheless, it has
been shown by Liang et al [13] that the method of Darboux transformation [14] can be used
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to obtain exact solutions of the Gross–Pitaevskii equation with quadratic expulsive potential
and scattering length that is growing exponentially with time.

The Darboux transformation, or analogously Bäcklund or dressing transformation,
applies only to systems of linear differential equations and cannot be applied directly
to nonlinear differential equations. To be able to apply the Darboux transformation to
a certain nonlinear differential equation, one finds a linear system of equations that is
equivalent to a nonlinear differential equation. The relation between the linear system and
the nonlinear differential equation is established through a consistency condition satisfied by
the linear system. The Darboux transformation is then applied to the linear system resulting
in transforming the equivalent nonlinear equation as well. The linear system is usually
represented in terms of a pair of matrices called the Lax pair which must satisfy a consistency
condition that is equivalent to the differential equation at hand. The difficulty is usually
in finding this Lax pair. It is known for some nonlinear differential equations such as the
Kortweg–de Vries (KdV) equation, the sine-Gordon equation and the nonlinear Schrödinger
equation [14]. In addition to the Lax pair, one also needs to know an exact solution of the
nonlinear differential equation. This exact solution is then used as a seed for the Darboux
transformation to generate other exact solutions.

In the present work, we present a method of obtaining these two essential ingredients for
performing the Darboux transformation, namely the Lax pair and the seed solution. In addition
to some known Lax pairs for the Gross–Pitaevskii equation, our method successfully produces
ones. In addition to the interest in constructing new nontrivial solitonic solutions from simpler
ones, there is also interest in obtaining generalized Lax pairs of modified Gross–Pitaevskii
equations concerning integrable and chaotic behaviour [15–17].

The rest of the paper is organized as follows. In section 2, we present the Gross–
Pitaevskii equation. In section 3, we review the Darboux transformation method. In section 4,
we calculate the Lax pair. In section 5, we derive seed solutions to the Gross–Pitaevskii
equation. Section 6 contains a discussion and conclusions.

2. The Gross–Pitaevskii equation

The mean-field equation of motion governing the evolution of the wavefunction of the Bose–
Einstein condensate is the so-called time-dependent Gross–Pitaevskii equation [8]

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2ψ(r, t) +

1

2
m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
ψ(r, t) + g|ψ(r, t)|2ψ(r, t), (1)

which is basically a Schrödinger equation but with a nonlinear term. Here, g is the effective
two-particle interaction which is proportional to the s-wave scattering length a according to
g = 4πah̄2/m, where m is the mass of an atom, and ωx, ωy and ωz are the trap frequencies
in the x, y and z directions, respectively. For axially symmetric elongated traps, where the
confining along, say, the y and z directions is much stronger than along the x direction, namely
ωy = ωz = ω⊥ � ωx , the condensate is quasi one dimensional. The Gross–Pitaevskii
equation can then be integrated over the transverse directions to reduce to a one-dimensional
nonlinear Schrödinger equation [12]

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+

1

2
mω2

xx
2ψ(x, t) +

g

2πa2
⊥

|ψ(x, t)|2ψ(x, t), (2)

where a⊥ = √
h̄/mω⊥ and ω⊥ are the characteristic length and frequency of the harmonic

trap in the transverse direction, respectively. Scaling length to a⊥, time to 2/ω⊥ and ψ(x, t)
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to 1/
√

2a⊥, the last equation takes the dimensionless form

i
∂ψ(x, t)

∂t
= −∂2ψ(x, t)

∂x2
+

1

4
λ2x2ψ(x, t) + 2a|ψ(x, t)|2ψ(x, t), (3)

where λ = 2ωx/ω⊥.
In the homogeneous case, λ = 0, exact bright and dark solitonic solutions can be

obtained for attractive interatomic interactions, a < 0, and repulsive interactions, a > 0,
respectively [12]. For an expulsive harmonic potential, it was shown by Liang et al [13] that
an exact solitonic solution can also be obtained provided that the scattering length is given by
a(t) = a0 exp (λt), where a0 is the scattering length at t = 0. In this case, the Gross–Pitaevskii
equation takes the form

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
λ2x2ψ(x, t) + 2a0 eλt |ψ(x, t)|2ψ(x, t) = 0. (4)

In the present work, we attempt to find the Lax pair of a Gross–Pitaevskii of the general form

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
λ(x)2ψ(x, t) + 2a(t)|ψ(x, t)|2ψ(x, t) = 0, (5)

where a(t) = a0 eγ (t)t and λ(x) and γ (t) are assumed to be independent general functions of
x and t, respectively. For the special case of λ(x) = λx and γ (t) = λ, the expulsive potential
case, equation (4) are retrieved.

3. The Darboux transformation and the Lax pair

Darboux transformation is a method used to obtain exact solutions of nonlinear partial
differential equations [14]. In this method, a linear system of equations for a field �(x, t) is
written in the form

�x = U�, (6)

�t = V �, (7)

where the matrices, U and V , are called the Lax pair. The subscripts x and t denote, here and
throughout, position and time derivatives, respectively. The consistency condition �xt = �tx

requires that U and V obey

Ut − Vx + [U,V ] = 0. (8)

The Lax pair is expressed in terms of the wavefunction ψ(x, t) such that the consistency
condition, equation (8), is equivalent to the Gross–Pitaevskii equation. Once the Lax pair is
obtained, the Darboux transformation can be applied to the linear system (6) and (7). In the
Darboux transformation method, one of the solutions of the linear system, denoted by �1, is
chosen as a seed to perform the following functional transform on the field �:

�[1] = �� − σ�, (9)

where �[1] is the transformed field, � is a constant diagonal matrix and σ = �1��−1
1 . For

the system (6) and (7) to be covariant with respect to the Darboux transformation, the Lax
pair must also be transformed such that

�[1]x = U [1]�[1], (10)

�[1]t = V [1]�[1], (11)
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is satisfied. As a result, the consistency condition is also covariant under the Darboux
transformation and takes the form of equation (8) but with the Lax pair, U and V , being replaced
by the transformed Lax pair U [1] and V [1]. This means that the new wavefunction ψ[1] is
also a solution of the Gross–Pitaevskii equation. Thus, using the Darboux transformation, we
obtain one exact solution from another. In some cases, this leads to classes of solutions.

The difficulty in this method is in finding the Lax pair that corresponds to a given
differential equation. Usually, one starts with a Lax pair and then discovers what differential
equation it represents. For the inhomogeneous case, with an expulsive potential the Lax pair
corresponding to equation (4) was found to be [13]

U =
(

ζ
√

a0Q

−√
a0Q

∗ −ζ

)
, (12)

V =
(

2iζ 2 + λxζ + ia0|Q|2 √
a0 [(λx + 2iζ )Q + iQx]

√
a0[−(λx + 2iζ )Q∗ + iQ∗

x] −2iζ 2 − λxζ − ia0|Q|2
)

, (13)

Here, Q(x, t) = exp(λt/2 − iλx2/4)ψ(x, t) and ζ(t) = ξ0 exp(λt), where ξ0 is an arbitrary
constant. The consistency condition generates equation (4). The Lax pair of the homogeneous
Gross–Pitaevskii equation can be obtained simply by setting λ = 0 in equations (12) and (13).

Liang et al have applied the Darboux transformation on the Lax pair (12) and (13) to
derive a solitonic solution of equation (4). Obtaining an exact solution of such a nonlinear
partial differential equation is interesting for its own sake. However, the fact that the potential
is expulsive, rather than impulsive as in the experiments, and that the time dependence of the
scattering length is restricted to an exponential function with a rate that equals the frequency
of the trap itself, makes this solution very special and not very useful from a realistic point of
view. A question then arises: can we generalize this approach to more realistic cases? Such as
having an impulsive harmonic potential and general time dependence of the scattering length
independent of the trap frequency? The latter would be of high importance for studying the
latest developments in the field including oscillating the optical trap such that the scattering
length changes with time sinusoidally [20].

The main aim of this paper is to answer these questions. This is performed in the next
section where we expand the Lax pair in powers of the wavefunction ψ(x, t). The unknown
coefficients of the expansion are functions of x and t. Then we require that the consistency
condition to be equivalent to equation (5). This results in a set of equations for the unknown
coefficients. Solving these equations leads to the desired Lax pair that corresponds to the
differential equation at hand. However, it turns out that this scheme does not always lead
to finding the Lax pair. In some cases, the number of the resulting equations turns out to
be larger than the number of the unknown coefficients making the system of equations to be
overdetermined. This results in some restrictions on the potentials and time dependences. The
fact that, in the work of Liang et al, the frequency of the expulsive potential and the rate of
exponential time-dependent scattering length are equal is one example on such a restriction.

4. Calculating the Lax pair

In this section, we present our method of obtaining the Lax pair of equation (5). The method
is summarized as follows. We calculate the matrix resulting from substituting the Lax pair for
the expulsive potential case, (12) and (13), in the consistency condition (8). We modify the
resulting matrix such that, when equating it to zero, our general Gross–Pitaevskii equation,
equation (5), is obtained. Then we express the unknown Lax pair in terms of second-order
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polynomials in the wavefunction ψ(x, t) with unknown function coefficients. Calculating the
consistency condition using this Lax pair and requiring the result to be equal to the modified
matrix, we obtain equations for the unknown coefficients. By solving these equations, we
obtain the Lax pair equivalent to equation (5). This approach reproduces the previously found
Lax pairs of the expulsive potential and homogeneous potential cases [13, 14], in addition to
a new Lax pair for the linear potential case.

Calculating the consistency condition for the expulsive potential case by substituting the
Lax pair (12) and (13) into equation (8), we obtain(

0 −i
√

a0 exp((λt/2 + iλx2/4))A[ψ,ψ∗]

−i
√

a0 exp((λt/2 − iλx2/4))A∗[ψ,ψ∗] 0

)
= 0,

(14)

where A[ψ,ψ∗] is the left-hand side of equation (4). This leads to A[ψ,ψ∗] = 0 and
A∗[ψ,ψ∗] = 0 which are the Gross–Pitaevskii equation, equation (4), and its complex
conjugate, respectively. The prefactors of A[ψ,ψ∗] and A∗[ψ,ψ∗] result from the functional
transformation Q(x, t) = exp(λt/2 − iλx2/4)ψ(x, t). In our general case, equation (5) is
accounted for if we modify this matrix into(

0 −i
√

a0 exp(γ (t)t/2 + if (x))B[ψ,ψ∗]

−i
√

a0 exp(γ (t)t/2 − if (x))B∗[ψ,ψ∗] 0

)
= 0,

(15)

where B[ψ,ψ∗] is the left-hand side of equation (5). Similar to the expulsive potential case,
it turns out that it is more convenient to express the wavefunction ψ(x, t) in terms of the
function Q(x, t) as follows:

ψ(x, t) = exp(−if (x) − γ (t)t/2)Q(x, t). (16)

This equation is a generalization of the analogous transformation in the expulsive potential
case. The real function f (x) appears only in the prefactors of B[ψ,ψ∗] and B∗[ψ,ψ∗], i.e.,
the resulting Gross–Pitaevskii equation is independent of f (x). However, it turns out that the
Lax pair depends on fx(x). Thus, we can choose a certain form of f (x) such that the Lax pair
is simplified without changing the differential equation that it corresponds to.

We expand the Lax pair in powers of Q,Qx and their complex conjugates as follows:

U =
(

f1 + f2Q f3 + f4Q

f5 + f6Q
∗ f7 + f8Q

∗

)
, (17)

V =
(

g1 + g2Q + g3Qx + g4QQ∗ g5 + g6Q + g7Qx + g8QQ∗

g9 + g10Q
∗ + g11Q

∗
x + g12QQ∗ g13 + g14Q

∗ + g15Q
∗
x + g16QQ∗

)
, (18)

where f1–8(x, t) and g1–16(x, t) are the unknown functions. The matrices U and V are
expanded up to the linear and quadratic order, respectively, since their product should account
for the cubic term in equation (5). We have terminated the expansion of U at the linear order
and excluded many terms from both expansions. This is because when we employed the full
expansions of both U and V up to the third order, many of the coefficients vanished since they
resulted in terms that are not present in equation (5). For example, having a Qx-term in U
would lead, when calculating the consistency condition, to the term Qxt which is not present
in the differential equation. Even in the present form, many of the coefficients of the Lax pair
(17) and (18) turn out to be zero. Consequently, the expansions in (17) and (18) are more than
sufficient to give rise to the cases of quadratic, linear and homogeneous potentials.
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We substitute the Lax pair (17) and (18) in the consistency condition (8) and use
equation (16) to express the matrix of equation (15) in terms of Q(x, t) and then we require
the left-hand-side of the consistency condition (8) to be equal to the matrix of equation (15).
Equating the coefficients of Q, Qx,Qxx,Qt , |Q|2Q, and their complex conjugates on both
sides of the resulting equation, we obtain 24 equations for the 24 unknown coefficients
f1–8 and g1–16. This results in many of the coefficients to be equal to zero or constant,
namely: f2 = f3 = f5 = f8 = g2 = g3 = g5 = g8 = g9 = g12 = g14 = g15 = 0,
f4 = −f6 = √

a0, g7 = g11 = √
a0i, g4 = −g16 = a0i. Using these constant values, the

equations for the rest of the coefficients simplify to

g10 = −g6, (19)

f1t − g1x = 0, (20)

f7t − g13x = 0, (21)

g10x + (f7 − f1)g10 +
√

a0(g13 − g1) − √
a0

[−iλ2/4 − (
γ − 2if 2

x + γt t + 2fxx

)/
2
] = 0,

(22)

g10x − (f7 − f1)g10 − √
a0(g13 − g1) +

√
a0

[ − iλ2/4 +
(
γ + 2if 2

x + γt t + 2fxx

)/
2
] = 0,

(23)

g10 + i
√

a0(f1 − f7) + 2
√

a0fx = 0. (24)

In the following, we solve this system of equations. Adding equations (22) and (23), we find

g10 = −√
a0(γ x + 2fx + γt tx)/2 + c1, (25)

where c1(t) is a constant of integration resulting from integrating over x. Equations (20) and
(21) can be both satisfied by assuming f7 = α1f1 + α2 and g13 = α1g1 + α3, where α1, α2

and α3 are the arbitrary constants. For α1 = 1, equations (20) and (21) become equivalent
and decouple from equations (22)–(24). Therefore, the solutions of equations (20)–(24) are
expected to differ significantly when α1 = 1 in comparison with the α1 �= 1 solutions. For
this reason, we treat below the cases of α1 �= 1 and α = 1 separately.

4.1. Case I: α1 �= 1

Substituting for g10 from equation (25) into equation (24), we get an equation for f1 whose
solution is given by

f1 = i

2(α1 − 1)

(
2iα2 + γ x − 2c1√

a0
− 2fx + γt tx

)
. (26)

Subtracting equations (22) and (23), and using the above expression for f1, we find

g1 = −i

4(α1 − 1)a0

[−4c2
1 + 4

√
a0c1(γ + γt t)x + a0(λ

2 − 4iα3 − (γ + γt t)
2x2)

]
. (27)

Substituting for f1 and g1 into equation (20), we find

2√
a0

[(γ + γt t)c1 − c1t ] + λλx + [2γt − (γ + γt t)
2 + γtt t]x = 0. (28)

For this equation to be satisfied, the function λ(x) must be of the form

λ(x) =
√

λ0 + λ1x + λ2
2x

2, (29)
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where λ0, λ1 and λ2 are the constants. Substituting this expression for λ(x) into equation (28),
it takes the form

2√
a0

[√
a0

2
λ1 + (γ + γt t)c1 − c1t

]
+

[
λ2

2 + 2γt − (γ + γt t)
2 + γtt t

]
x = 0. (30)

Here again, the cases of λ2 �= 0 and λ2 = 0 should be treated separately.

4.1.1. Case I(a) (λ2 �= 0). Equating separately the first and the second lines of equation (30)
to zero, and solving for γ (t) and then for c1(t), we get

γ (t) = λ2 − 1

t
ln(c2 e2λ2t + c3), (31)

and

c1(t) = 4c4λ2 eλ2t − √
a0λ1(c3 − c2 e2λ2t )

4λ2(c3 + c2 e2λ2t )
, (32)

where c2, c3 and c4 are the constants of integration (independent of x and t). Using the last
two equations to substitute for c1(t) and γ (t) into equations (25)–(27), we obtain explicit
expressions for f1(x, t), g1(x, t) and g10(x, t):

f1(x, t) = iη2

4λ2(α1 − 1)η1
, (33)

g1(x, t) = i
[(

c2
2ζ

4 + c2
3

)
η4 − 2c2c3ζ

2η5
]

16(α1 − 1)λ2
2η

2
1

, (34)

g10(x, t) = −
√

a0η6

4λ2η1
, (35)

where η1 = c3 +c2ζ
2, η2 = −4λ2fxη1 +

(
λ1 +2λ2

2x
)
η3, η3 = c3 −c2ζ

2, η4 = λ2
1 −4λ0λ

2
2, η5 =

λ2
1 + λ2

2

(
4λ0 + 8λ1x + 8λ2

2x
2
)
, η6 = 4λ2fxη1 +

(
λ1 + 2λ2

2x
)
η2 and ζ = exp(λ2t). It should be

noted here that since α2 and α3 do not appear in the Gross–Pitaevskii equation, they have been
readily set to zero. This completes the determination of the unknown coefficient functions
f1–7 and g1–16. Substituting for these coefficients into equations (17) and (18), we obtain the
Lax pair

U =
(

f1
√

a0Q

−√
a0Q

∗ α1f1

)
, (36)

V =
(

g1 + ia0|Q|2 −g10Q + i
√

a0Qx

g10Q
∗ + i

√
a0Q

∗
x α1g1 − ia0|Q|2

)
. (37)

Calculating the consistency condition (8) using this Lax pair, we obtain the Gross–
Pitaevskii equation

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4

(
λ0 + λ1x + λ2

2x
2
)
ψ(x, t)

+
2a0

c2 eλ2t + c3 e−λ2t
|ψ(x, t)|2ψ(x, t) = 0. (38)

The lax pair (17) and (18) corresponding to this Gross–Pitaevskii equation is one of the main
results of this paper. It is a generalization to the previous cases of homogeneous potential [14]
and quadratic potential [13].
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4.1.2. Case I(b) (λ2 = 0). In this case, the solution of equation (30) gives

γ (t) = −1

t
ln(c2t + c3), (39)

c1(t) = 8c4 +
√

a0λ1η2t

8η1
. (40)

The resulting Lax pair is again given by equation (36) with

f1(x, t) = − i(4c2x + 2c3λ1t + c2λ1t
2 + 8η1fx)

8(α1 − 1)η1
, (41)

g1(x, t) = i
(
4c2

3η2 + 4c2c3η3t + c2
2η4

)
64(α1 − 1)η2

1

, (42)

g10(x, t) =
√

a0

8η1
(4c2x + 2c3λ1t + c2λ1t

2 − 8η1fx). (43)

Here, η1 = c3 + c2t , η2 = λ1(λ1t
2 − 4x) − 4λ0, η3 = η2 − 4λ0 and η4 = λ2

1t
4 − 8λ1xt2 −

16λ0t
2 + 16x2. The Gross–Pitaevskii equation corresponding to this case is

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
(λ0 + λ1x)ψ(x, t) +

2a0

c2t + c3
|ψ(x, t)|2ψ(x, t) = 0. (44)

4.2. Case II: α1 = 1

For α1 = 1, equations (20)–(24) reduce to

f1t − g1x = 0, (45)

g10x + α2g10 +
√

a0
(
α3 + iλ2/4 + γ /2 − if 2

x + γt t/2 + fxx

) = 0, (46)

g10x − α2g10 − √
a0

(
α3 + iλ2/4 − γ /2 − if 2

x − γt t/2 − fxx

) = 0, (47)

g10 − i
√

a0α2 + 2
√

a0fx = 0. (48)

Subtracting equations (46) and (47) and substituting for g10x using equation (48), we get a
second-order differential equation for f (x), with a solution

f (x) = (γ + γt t)x
2/4 + c2x + c1, (49)

where c1 and c2 are the constants. Adding equations (46) and (47) and using the last equation
to substitute for f (x), we get

g10(x, t) = 4α3 + iλ(x)2 − i(2c2 + γ x + γt tx)2. (50)

Substituting for g10(x, t) from the last equation and for f (x) from equation (49) into
equation (48), we obtain

−4iα2
2 − 4α3 + 8α2c2 − i

(
λ0 − 4c2

2

)
+ [−iλ1 + 4(α2 + ic2)(γ + γt t)]x

+
[−i

(
λ2

2 − γ 2 − 2γ γt t − γ 2
t t2

)]
x2 = 0. (51)

Equating the first line of this equation to zero, we obtain α2 = α3 = 0 and c2 = √
λ0/2.

Equating the coefficient of x to zero, we find

γ (t) = λ1

4c2
+

c1

t
, (52)
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and equating the coefficient of x2 to zero, we get

γ (t) = ±λ2 +
c1

t
. (53)

Substituting this solution into equation (49), we note that the term γ + γt t vanishes and thus
f (x) becomes a function of x only as it should be. The last two equations indicate that
c2 = ±λ1/4λ2 = √

λ0/2. Equation (45) is decoupled from equations (46)–(48), and thus can
be satisfied by setting an arbitrary expression for f1(x, t) and then solving for g1(x, t). Since
the choice of f1(x, t) is arbitrary and will not affect the resulting Gross–Pitaevskii equation,
we make the simple choice f1(x, t) = g1(x, t) = 0. The resulting Lax Pair is given by

U =
(

0
√

a0Q

−√
a0Q

∗ 0

)
, (54)

V =
(

ia0|Q|2 √
a0[iQx + (

√
λ0 ± λ2x)Q]

√
a0[iQ∗

x − (
√

λ0 ± λ2x)Q∗] −ia0|Q|2
)

, (55)

where Q(x, t) = exp[(2c1 + 2i
√

λ0x ± 2λ2t ± iλ2x
2)/4]ψ(x, t). The corresponding Gross–

Pitaevskii equation is calculated to be

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
(
√

λ0 ± λ2x)2ψ(x, t) + 2a0 ec3±λ2t |ψ(x, t)|2ψ(x, t) = 0. (56)

Substituting c2 = 0 and fx(x) = λ2x/2 into equations (36) and (37) of Case I (α1 �= 1),
we obtain equations (54) and (56) of the present case with a positive sign of λ2. For c3 = 0
and fx(x) = −λ2x/2, we obtain equations (54)–(56) with the negative sign of λ2. Thus,
equations (54)–(56) are just special cases of equations (36), (37) and (38).

4.3. Lax pairs of some special cases

In the following, we use our previous results to calculate the Lax pair for some interesting
special cases.

4.3.1. Homogeneous potential (λ(x) = 0). Setting λ0 = λ1 = fx = 0 in the Lax pair of
Case I(b), we get the Lax pair

U =
( −ic2x

2(α1−1)η1

√
a0Q

−√
a0Q

∗ −iα1c2x
2(α1−1)η1

)
, (57)

V =

 ic2

2x
2

4(α1−1)η2
1

+ ia0|Q|2 √
a0

[
iQx − c2x

2η1
Q

]
√

a0
[
iQ∗

x + c2x
2η1

Q∗] iα1c
2
2x

2

4(α1−1)η2
1
− ia0|Q|2


 , (58)

where Q(x, t) = ψ(x, t)/
√

c3 + c2t, η1 = c3 + c2t, c1, c2 and α1 are the arbitrary constants.
The Gross–Pitaevskii equation that corresponds to this Lax pair is

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

2a0

c3 + c2t
|ψ(x, t)|2ψ(x, t) = 0. (59)

Setting c2 = 0 in equations (57)–(59), we reproduce the Lax pair of a Gross–Pitaevskii
equation with a zero potential and time-independent scattering length which agrees with the
result of [14]. It should be noted that the constant diagonal element of U in [14] would have
been accounted for if we have not set α1 and α2 to zero.



9688 U Al Khawaja

4.3.2. Linear potential (λ(x)2 = λ1x). Setting, in Case I(b), λ0 = fx = 0, we get the Lax
pair

U =
(− i(4c2x+λ1η2t)

8(α1−1)η1

√
a0Q

−√
a0Q

∗ − iα1(4c2x+λ1η2t)

8(α1−1)η1

)
, (60)

V =




i(λ1t
2−4x)(λ1η

2
2−4c2

2x)
64(α1−1)η2

1
+ ia0|Q|2 √

a0
[
iQx − λ1η2t+4c2x

8η1
Q

]
√

a0
[
iQ∗

x + λ1η2t+4c2x

8η1
Q∗] iα1(λ1t

2−4x)(λ1η
2
2−4c2

2x)
64(α1−1)η2

1
− ia0|Q|2


 , (61)

where Q(x, t) = ψ(x, t)/
√

c3 + c2t, η1 = c3 + c2t and η2 = c3 + η1. The Gross–Pitaevskii
equation that corresponds to this Lax pair is

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
λ1xψ(x, t) +

2a0

c3 + c2t
|ψ(x, t)|2ψ(x, t) = 0. (62)

To the best of our knowledge, this is the first time the Lax pair of a Gross–Pitaevskii equation
with a linear potential is obtained.

4.3.3. Quadratic expulsive potential
(
λ(x)2 = λ2

2x
2
)
. Setting, in Case I(a), λ0 = λ1 = 0,

we get the Lax pair

U =
( iλ2η2x

2(α1−1)η1

√
a0Q

−√
a0Q

∗ iα1λ2η2x

2(α1−1)η1

)
, (63)

V =

 − ic2c3λ

2
2ζ

2x2

(α1−1)η2
1

+ ia0|Q|2 √
a0

[
iQx + 2λ2η2x

2η1
Q

]
√

a0
[
iQ∗

x − 2λ2η2x

η1
Q∗] − iα1c2c3λ

2
2ζ

2x2

(α1−1)η2
1

− ia0|Q|2


 , (64)

where Q(x, t) = ψ(x, t)/
√

c3/ζ + c2ζ , η1 = c3 + c2ζ
2, η2 = c3 − c2ζ

2 and ζ = exp(λ2t).
The Gross–Pitaevskii equation that corresponds to this Lax pair is

i
∂ψ(x, t)

∂t
+

∂2ψ(x, t)

∂x2
+

1

4
λ2

2x
2ψ(x, t) +

2a0

c2 eλ2t + c3 e−λ2t
|ψ(x, t)|2ψ(x, t) = 0. (65)

For c2 = 0, c3 = 1 and fx = λ2x/2, the expulsive potential case, equations (4), (12) and (13),
is essentially retrieved.

5. Seed solution

In this section, we derive a solution of the general Gross–Pitaevskii equation, equation (5),
to be used as a seed to the Darboux transformation, as described in section 3. This can be
achieved by writing ψ(x, t) in the form

ψ(x, t) = A exp[h1(x, t) + ih2(x, t)], (66)

where A is a real constant and h1(x, t) and h2(x, t) are the real functions. Substituting this
expression for ψ(x, t) into equation (5), we obtain from the real and imaginary parts

8A2 e2h1a0γ (t) + λ(x)2 − 4
(
h2t − h2

1x + h2
2x − h1xx

) = 0, (67)

h1t + 2h1xh2x + h2xx = 0. (68)
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We note that with the assumption h1(x, t) = h1(t), the last two equations simplify to

8A2 e2h1a0γ (t) + λ(x)2 − 4
(
h2t + h2

2x

) = 0, (69)

h1t + h2xx = 0. (70)

Solving the last equation for h2(x, t), we obtain

h2(x, t) = c1(t) + c2(t)x − 1
2x2h1t . (71)

Substituting this expression for h2 into equation (69), we get

8A2 e2h1a0γ (t) + λ(x)2 − 4
[
(c2 − xh1t )

2 + c1t + xc2t − 1
2x2h1t t

] = 0. (72)

This equation can be solved by expanding λ(x)2, in powers of x, up to the second order,
as in equation (29). Substituting this expansion into equation (72) and equating to zero the
coefficients of x0, x1 and x2, we obtain

λ0 + 8A2 e2h1a0γ (t) − 4c2
2 − 4c1t = 0, (73)

λ1 + 8c2h1t − 4c2t = 0, (74)

λ2
2 − 4h2

1t + 2h1t t = 0. (75)

The solution of the last equation is

h1(t) = c4 − 1
2 ln {cosh [λ2(2c3 + t)]} = 0. (76)

Substituting this solution into equation (74), we get

c2(t) = c5 sech η1 +
λ1

4λ2
tanh η1, (77)

and equation (73) leads to

c1(t) = c6 +
1

16λ3
2

{
λ2(c7 − t)

(
λ2

1 − 4λ0λ
2
2

)
+ 8c5λ1λ2(sech η1 − sech η2)

+
(
λ2

1 − 16c2
5λ

2
2

)
(tanh η1 − tanh η2)

+ 2A2 e2c4g0

∫ t

c7

dt ′γ (t ′) sech[λ2(2c3 + t ′)]
}

, (78)

where η1 = λ2(2c3 + t), η2 = λ2(2c3 + c7) and c3–7 are constants of integration.
Having determined the unknown functions h1(t) and h2(x, t), the seed solution takes the

form

ψ(x, t) = A
√

sech[λ2(2c3 + t)] exp{c4 + i[c1(t) + c2(t)x + λ2 tanh[λ2(2c3 + t)]x2/4]}, (79)

where c1(t) and c2(t) are given by equations (78) and (77). Direct substitution of this solution
into equation (5) shows that it is indeed a solution for any a(t).

We have seen in the previous section that the Lax pair exists for specific pairs of λ(x)

and a(t). Using these specific expressions of a(t) in the solution (79), explicit forms of
the seed solution can be obtained. For the homogeneous potential case, λ(x) = 0 and
a(t) = a0/(c8 + c9t), the seed solution (79) takes the form

ψ(x, t) = A exp
[
c4 + 2ic6 + ic2

5(c7 − t) + ic5x
] [

a(c7)

a(t)

] 2iA2a0e2c4
c9

, (80)

where c4–c7 are arbitrary constants. For the linear potential case, λ(x)2 = λ1x and
a(t) = a0/(c8 + c9t), the seed solution is
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ψ(x, t) = A exp
(
iλ1tx/4 − iλ2

1t
3
/

48
) [

a(0)

a(t)

] 2iA2a0
c9

, (81)

where we have set c4 = c5 = c6 = c7 = 0 for simplicity. Finally, for the quadratic potential
case, λ(x)2 = λ2

2x
2 and a(t) = a0/

[
c8 exp(λ2t) + c9 exp(−λ2t)

]
. The seed solution for this

case is given by

ψ(x, t) = A
√

sech(λ2t) exp[iλ2x
2 tanh(λ2t)/4]

[
a(0) sech(λ2t)

a(t)

] 2iA2a0
(c8−c9)λ2

, (82)

where here also we have set c4 = c5 = c6 = c7 = 0, for simplicity. Having not set these
constants to zero, the seed solutions (81) and (82) turn out to be lengthy and more complicated
but may lead to more interesting solitonic solutions when used in the Darboux transformation.

6. Conclusion

The two essential ingredients necessary to solve a differential equation using the Darboux
transformation method, namely the Lax pair and the seed solution, have been obtained here
for the time-dependent Gross–Pitaevskii equation. Our approach successfully generates the
Lax pairs corresponding to the cases of constant, linear and quadratic potentials. This approach
can be useful in searching for the Lax pair of other differential equations. A more sophisticated
method for finding the Lax pair was developed by Wahlquist and Estabrook [21]. In addition,
rather general Lax pairs for general potentials in the Gross–Pitaevskii equation have been
constructed [22, 23]. Furthermore, the so-called inverse scattering method is also an important
tool in constructing nontrivial soliton solutions [22]. Our approach is, on the other hand, more
focused on a specific differential equation, namely the Gross–Pitaevskii equation, and on a
specific type of solutions, namely the solitonic solutions, and is not meant to be rigorous. The
calculation is simple and generates interesting solutions, some of which are new.

For the homogeneous case, the Gross–Pitaevskii equation, equation (59), describes
a homogeneous Bose gas with time-dependent interatomic scattering length. The time-
independent analogue of this equation (obtained by setting c2 = 0 in equation (59)) has
bright and dark soliton solutions for negative and positive interatomic scattering lengths,
respectively [12]. These solutions have been studied extensively in the literature where the
Darboux transformation was used to generate classes of solitonic solutions [14].

For the linear potential case, the Gross–Pitaevskii equation, equation (62), describes a
Bose gas trapped in a linear trap. Although, experimental traps produce quadratic potentials,
it has been shown that the surface of a Bose–Einstein condensate and its excitations are
described by a Gross–Pitaevskii equation with a linear potential [18, 24]. Using the seed
solution equation (79) and the Lax pair equations (60) and (61), exact solutions of such an
equation can be obtained and surface excitations can be studied [25].

For the quadratic potential case, the Gross–Pitaevskii equation, equation (65), describes
a Bose gas trapped in a quadratic trap. This case has been addressed before by Liang
et al, where the Lax pair was found for the special case of expulsive quadratic potential and
scattering length growing exponentially with time. However, the Lax pair of Liang et al is a
special case of our Lax Pair (for c2 = 0 and c3 = 1). In our case, the time dependence of the
scattering length is not restricted to grow exponentially with time as in Liang’s work. Instead,
it can decay with time (for c2 = 1 and c3 = 0). It can also change sign around a divergent
point. This can be obtained for |c2| < |c3| and c2c3 < 0. This behaviour for the scattering
length resembles that of a Feschbach resonance. In the Feshbach resonance, the magnetic field
is used to change the value and sign of the scattering length. The scattering length diverges at
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the point where the scattering length changes sign. Thus, if the magnetic field changes with
time at a rate that equals λ2, then equation (65) describes this situation and the exact solution
of such an experimentally interesting case can be obtained using the Lax pair we found here
together with the corresponding seed solution [25]. Furthermore, we can replace λ2 by a pure
imaginary parameter λ3 = λ2i. The potential in this case becomes impulsive and the scattering
length a(t) becomes sinusoidal. With proper choices for the arbitrary constants c2 and c3, the
scattering length can be expressed in terms of 1/ sin(λ3t) or 1/ cos(λ3t) which are oscillatory
but with periodic singularities.
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